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Abstract—We consider the graph estimation for Ising model
from observed binary data. Popular approaches in the literature
are largely penalized sparse selection procedures that depend on
tuning parameters to be selected. The output of such procedures
is usually one single sparse graph without any ranking infor-
mation of the individual edges. In scientific practice, however,
it is more desirable to be able to rank all potential edges
based on their statistical significance, and select the sparse graph
by thresholding. In this paper, we propose a novel PRediction
Approach for Ising Model Estimation (PRAIME). The proposed
framework reformulates Ising model estimation as the prediction
of the observed data, and provides an estimate and a statistical
significance measure of the Ising model parameter for each node
pair using only the predicted values. Thus it enables the ranking
all potential edges and the flexible sparse graph selection by
thresholding, and allows the researchers to use the predictive
algorithm of their choice. We implemented PRAIME using
random forest, illustrated the advantage of PRAIME over the
penalized sparse selection approaches in accuracy and flexibility
using synthetic data, and applied it to a congress co-sponsorship
dataset.

Index Terms—graphical model, Ising model, random forest

I. INTRODUCTION

Probabilistic graphical models have enabled the scientists

from various domains to infer the dependency structure among

variables. Very often, such dependencies can be conveniently

modeled as Markov Random Fields (MRF). We focus on

the binary MRF, i.e., the Ising model. Ising model with

chain structure was first proposed in statistical mechanics

for modeling ferromagnetism [1]. Later it was extended to

lattice and arbitrary graphs, and became widely used in spatial

statistics [2], imaging processing [3] and neural science [4],

for which the graph structures are usually known.

Graph learning for Ising model has also drawn more atten-

tion in the last decade. For identifiability and interpretability,

the unknown graph is preasumbly sparse. A popular approach

of sparse graph estimation for Ising model is to perform sepa-

rate node-wise penalized logistic regression, which is referred

to as neighborhood selection in the literature [5], [6]. This

can be considered as the binary extension of [7] which is for

Gaussian graphical model (GGM). Similar to graphical lasso

[8] that provides a penalized maximum likelihood estimator

(MLE) for the sparse GGM, penalized maximum pseudo-

likelihood estimators have also been proposed for sparse Ising

model estimation [9], [10]. It can be seen as solving all

node-wise logistic regressions jointly without giving up the

symmetric constraints. A related line of research approximate

penalized MLE using MCMC samples from Gibbs sampler

where the sampling distributions are essentially the node-wise

components of the pseudo-likelihood [11], [12]. All the above

methods formulate the Ising model estimation as a sparse

model selection problem, and propose penalized optimization

procedures that require predefined regularization parameters.

Despite the recent progress on penalty parameter selection,

penalized model selection remains a difficult problem as these

parameters are often un-intuitive, and the optimal selection

of them may require additional “hyper” tuning parameters.

Furthermore, penalized model selection approaches do not

provide ranking of statistical significance of the edges, and

there is no precise control over the sparsity of the resultant

graph. An output graph with reasonable number of edges are

often from numerous trial-and-error experiments with various

penalty parameters. The cause of these problems lays in the

sparsity constraints of optimization objectives, which cannot

be solved by further development along this direction, even

though it may be alleviated.

We propose to address these issues by a complete de-

coupling of the Ising model parameters, and the edge-wise

estimation of them with associated uncertainty measures.

Since all parameters are estimated separately, the algorithm is

embarrassingly parallel. All the edges can be ranked based on

their statistical significance, and further thresholding yields a

sparse graph with appropriate number of edges. Our estimators

only depend on the predicted conditional probabilities of

the observed data. Thus there is no structural assumptions

such as sparsity of the graph to be estimated, or parametric

assumptions on the predictive models utilized. In this paper,

we use random forest for predictions. But it can be replaced by

other probabilistic predictive models such as neural network.

II. BACKGROUND

A. Notations

We first introduce the default notations used in this paper.

For a length q vector x, and set A ⊂ {1, . . . , q} with

|A| = s, we use xA to denote the length s subvectors of

x with coordinates in A, and x−A = xAc where Ac is the

complement set of A. Similarly, for a q × p matrix X , and

sets A ⊂ {1, . . . , q} with |A| = s and B ⊂ {1, . . . , p} with

|B| = r, we use XA,B to denote the s × r submatrix of X
with rows in A and columns in B, and X−A,B = XAc,B ,



XA,−B = XA,Bc and X−A,−B = XAc,Bc . In particular, we

use Xjk to denote the element of X in its jth row and kth

column, XA,� as the s × p submatrix of X composed of the

rows in A and X�,B the q × r submatrix consisting of the

columns in B.

B. Ising Models

Let Y = (Y1, Y2, . . . , Yp)
T ∈ {0, 1}p be a length p binary

random vector, and assume that it follows the Ising model with

probability mass function

fY (y) =
1

Z(Ω)
exp

(−yTΩy
)

(1)

where the symmetric parameter matrix Ω = (Ωjk)p×p, and

Z(Ω) =
∑

y∈{0,1}p exp
(−yTΩy

)
is the normalization con-

stant.

Let G(Ω) = (V,E) be the sparse graph among the p
coordinates of Y induced by Ω, where V = {1, . . . , p}
and E is the set of the pairs of the row and column ID’s

of the nonzero off-diagonal elements of Ω. Since the graph

is undirected, these pairs are un-ordered. The conditional

independence structure among the p variables is encoded in

this graph, and there is

Ωjk = 0 ⇔ Yj ⊥ Yk|Y−{j,k}.

Suppose we observe y(1), y(2), . . . , y(n), n iid samples from

the above Ising model. The goal of this paper is to use these

observed data to estimate the Ising model parameter matrix Ω,

especially recovering its sparse graph structure.

C. Node-wise Logistic Regression

This graph estimation problem is equivalent to identifying

the neighboring vertex set for each node. This observation

leads to the neighborhood selection methods for the Ising

model graph estimation [5], [6].

For an arbitrary node u ∈ {1, . . . , p}, the conditional

distribution of Yu|Y−u satisfies

logit (P (Yu = 1|Y−u = y−u)) = −Ωuu − 2
∑

w∈ne(u)

Ωwuyw

where ne(u) = {v ∈ V : {v, u} ∈ E, v �= u} is the

neighborhood of the node u.

Neighborhood selection approaches reformulate the graph

estimation as p separate variable selection problems, one for

each node. They can be solved using penalized regression

techniques such as the lasso [13]. The variable selection

consistency of the lasso for logistic regression assures the

graph selection consistency of the neighborhood selection

procedures. The idea of neighborhood selection was first arisen

in the context of GGM estimation [7]. [5] can be regarded as

its extension to the binary MRF, and it was later generalized

to the a wider range of MRFs with node-wise conditional dis-

tributions from certain exponential families [14], [15]. Node-

wise regression ignores the fact that Ω, the parameter matrix

of the Ising model, is symmetric. Thus the output parameter

matrix needs to be symmetrized, and the final estimate of Ωjk

could be the minimum or the maximum of the corresponding

estimates from the two logistic regression models for nodes j
and k.

D. Classical Pseudo-likelihood

The Ising model likelihood is notoriously intractable. Even

when the graph structure is known, parameter estimation

via maximizing the likelihood is difficult. A computationally

tractable alternative without much loss in accuracy is maximiz-

ing the following pseudo-likelihood based on the node-wise

conditional distributions

�̆(Ω; y(1), . . . , y(n)) =

p∑
j=1

[
n∑

i=1

log
(
P (Yj = y

(i)
j |Y−j = y

(i)
−j)

)]
(2)

where

log
(
P (Yj = y

(i)
j |Y−j = y

(i)
−j)

)
=− y

(i)
j

⎛⎝Ωjj + 2
∑
k �=k

y
(i)
k Ωjk

⎞⎠− Φ(y
(i)
−j ,Ω)

with Φ(y
(i)
−j ,Ω) = log

(
1 + exp(−Ωjj − 2

∑
k �=j y

(i)
k Ωjk)

)
as the log-normalization constant.

Pseudo-likelihood based approach was first proposed by

[16] for Ising model parameter estimation on lattice graph, and

was later extended to sparse graph estimation with a graph

sparsity penalty imposed [9], [10]. These pseudo-likelihood

based methods for sparse graph estimation takes advantage

of the simple structure of the conditional distributions so that

more computationally efficient estimation algorithms become

possible.

The conditional likelihood of each node only depends on

one row (or column) of the parameter matrix Ω. The node-

wise logistic regression procedures are in fact approximates

of the pseudo-likelihood estimator by maximizing the p pieces

of the pseudo-likelihood for each node separately to estimate

the rows (or columns) of Ω without the symmetry constraint.

The pseudo-likelihood methods can be seen as solving the p
logistic regressions together. This connection between them is

similar to that between graphical lasso and [7], with the only

difference being that the exact penalized MLE is feasible for

GGM but not for Ising model due to the computational burden

in evaluating the partition function as discussed above.

III. PROPOSED METHOD: PRAIME

A. Pairwise conditional likelihood

The pseudo-likelihood (2) belongs to a wider class of

composite likelihood methods aiming at performing statistical

inference based on the product of a collection of simpler

component likelihoods instead of the full likelihood [17].

The individual components of the composite likelihood could

be the conditional distributions of the individual variables

given the values of all other variables as in (2), the marginal

distribution of the individual variables as commonly used in

variational Bayes methods, the pairwise marginal distributions



of the variables, or the marginal distributions of some other

simple functions of pairs of variables.

In this paper, we propose to consider the following compos-

ite likelihood for Ising model based on pairwise conditional

distributions.

�̃(Ω; y(1), . . . , y(n))

=

p−1∑
j=1

p∑
k=j+1

[
n∑

i=1

log
(
P (Y(j,k) = y

(i)
(j,k)|Y−(j,k) = y

(i)
−(j,k))

)]
(3)

Define r10 = Ωj,j + 2Ωj,−(j,k)y−(j,k), r01 = Ωk,k +
2Ωk,−(j,k)y−(j,k), and there is

P (Y(j,k) = δ|Y−(j,k) = y−(j,k))

∝

⎧⎪⎪⎨⎪⎪⎩
1 δ = (0, 0)
exp[−r10] δ = (1, 0)
exp[−r01] δ = (0, 1)
exp[−r10 − r01 − 2Ωjk] δ = (1, 1)

(4)

Let

πδ
jk(y−(j,k)) ≡ P (Y(j,k) = δ|Y−(j,k) = y−(j,k)) (5)

for δ ∈ S = {(0, 0), (0, 1), (1, 0), (1, 1)}, and it immediately

follows that

Ωjk = −1

2
log

(
π
(1,1)
jk (y−(j,k))π

(0,0)
jk (y−(j,k))

π
(0,1)
jk (y−(j,k))π

(1,0)
jk (y−(j,k))

)
,

which only depends on the conditional distribution of Y(j,k),

but not the other components of the composite likelihood (3).

B. Pairwise Classification

We propose to take advantage the above observation, and

estimate each element of the parameter matrix completely

separately using an individual component pairwise conditional

likelihood.

For each distinct node pair (j, k), we treat the bivariate

random vector Y(j,k) as a categorical variable with four classes

S = {(0, 0), (0, 1), (1, 0), (1, 1)}, and estimate the conditional

distribution P (Y(j,k)|Y−(j,k) = y−(j,k)) using a probabilistic

multi-class classification algorithm such as logistic regression

or random forest. We use π̂δ
jk(y

(i)
−(j,k)) for δ ∈ S to denote the

predicted values of the conditional probabilities (5) for sample

i.
We propose a PRediction Approach for Ising Model

Estimation (PRAIME) which estimates Ωjk with

Ω̂jk = n−1
n∑

i=1

h
(i)
jk (6)

where

h
(i)
jk = −1

2
log

⎛⎝ π̂
(1,1)
jk (y

(i)
−(j,k))π̂

(0,0)
jk (y

(i)
−(j,k))

π̂
(0,1)
jk (y

(i)
−(j,k))π̂

(1,0)
jk (y

(i)
−(j,k))

⎞⎠
The PRAIME outputs are estimates of Ωjk for all node

pairs. A statistical significance measure for each can be

calculated according to the properties of the probabilistic

classification algorithm used. For example, if implemented

with multi-class logistic regressions, Ω̂jk is simply a linear

combination of the estimated class-specific intercepts, and

the corresponding Wald statistic can be used for ranking all

potential edges.

The theoretical properties of PRAIME also depend on the

properties of the predictive algorithm used, and a compre-

hensive case-by-case investigation is beyond the scope of

this paper. The following proposition on the consistency of

PRAIME holds in general.

Proposition 1 (Consistency). The estimator (6) is consistent
if the mean square prediction error of the probabilistic multi-
class classifier goes to zero and if the true and the predicted
conditional probabilities are bounded above zero.

Proof. If the true and the predicted conditional probabilities

for all samples are all abounded above d > 0, then for some

constant Cd > 0 that depends on d, there is

(h
(i)
jk − Ωjk)

2 ≤ Cd ·
∑
δ∈S

[π̂δ
jk(y

(i)
−(j,k))− πδ

jk(y
(i)
−(j,k))]

2.

Aggregating both sides of the above over i = 1, . . . , n gives

the following upper bound for the estimation error of (6)

E(Ω̂jk−Ωjk)
2 ≤ E

[
1

n

n∑
i=1

(h
(i)
jk − Ωjk)

2

]
≤ Cd ·MSPEjk,

where the mean square prediction error of the multi-class

probabilistic classifier is defined as

MSPEjk = E

{
n−1

n∑
i=1

∑
δ∈S

[π̂δ
jk(y

(i)
−(j,k))− πδ

jk(y
(i)
−(j,k))]

2

}
So the proposed estimator is consistent if MSPEjk → 0 for

the probabilistic classifier used.

C. Random Forest Graph Estimator

We propose to implement PRAIME using random forest

[18] as the classifier due to its overall superior empirical

performance and simplicity in training and tuning. We use

the out-of-bag samples for prediction. We refer to this version

of PRAIME as PRAIME-RF. In the literature of conditional

independence graph estimation, random forest has been used

within the node-wise regression framework where the neigh-

borhood for each node is selected based on random forest’s

variable importance measure [19]. In contrast, PRAIME-RF

only relies on the prediction performance of random forest.

For PRAIME-RF, we propose to rank the potential edges

using an empirical Bayes framework. In detail, for node pair

(j, k), we define its t statistic as

Zjk =
Ω̂jk

sdjk/
√
n

(7)

where sdjk is the standard deviation of sequence {h(i)
jk }ni=1.



In principle, all potential edges can be ranked based on

Zjk’s, and there is no edge between (j, k) if it is small.

In practice, we apply further empirical Bayes adjustment, as

it is unclear whether these t statistics have an appropriate

theoretical null distribution (the distribution when there is

no true edge). Using all {Zjk : 1 ≤ j < k ≤ p} as the

input z scores, we calculated their local false discovery rates

following Efron’s framework [20, Chapter 5]. For node pair

(j, k), we refer to its local false discovery rate as locfdrjk.

Roughly speaking, locfdrjk has the interpretation of P (Ωjk =
0|y(1), . . . , y(n)). So the statistical significance of the edge

decreases as locfdr increases. Ranking all edges (j, k) with

j < k in the ascending order of locfdrjk, and let locfdr�m
be the mth value in this sequence, the False Discovery Rate

(FDR) for the graph with exactly M edges is

FDR�
M = M−1

M∑
m=1

locfdr�m

Thus the user can threshold the graph based on prespecified

FDR control or domain knowledge.

We summarize PRAIME-RF in Algorithm 1.

Algorithm 1 PRAIME-RF

Input: y(1), y(2), . . . , y(n), n iid observations from an Ising

model with unknown parameter matrix Ω
Output: Estimated graph structure of Ω.

1: for each node pair 1 ≤ j < k ≤ p do
2: Use random forest to predict Y(j,k) as a multi-class

response, and obtain π̂δ
jk(y

(i)
−(j,k)), the out-of-bag proba-

bilistic predictions of P (Y(j,k) = δ|Y−(j,k) = y
(i)
−(j,k)) for

δ ∈ S and i = 1, . . . , n.

3: Estimate Ωjk by (6)

4: Calculate the t statistic by (7)

5: end for
6: Calculate the local false discovery rates locfdrjk for 1 ≤

j < k ≤ p according to [20, Chapter 5].

7: Rank the edges in the ascending order of locfdr and select

the sparse graph by hard thresholding.

IV. EXPERIMENTS

In this section, we investigate PRAIME-RF’s ranking per-

formance and the properties of the resultant graphs in ex-

periments using both synthetic and real world datasets. We

compared PRAIME-RF with many other competitors in syn-

thetic data evaluation, including: (1) an efficient pseudo-

likelihood method with L1 sparsity penalty (EPL) [10]; and

(2) a neighborhood selection method [6] where extended BIC

[21] is used to select the penalty parameters of the lasso

logistic regressions for neighborhood selection. We refer to

this neighborhood selection method as NS-BIC(γ) where γ
is the tuning parameter of the extended BIC. We consider

γ = 0, 0.5, 1, same as in [6]. For the real data evaluation,

however, we have to skip EPL due to the limitation in

computational speed and memory, even though it is already

much more computationally efficient than the previous pseudo-

likelihood algorithms [9].

A. Synthetic Data Evaluation

We investigate the ranking performance using synthetic

data. We simulate data using R package IsingSampler [22]

with the Ising model parameter matrix Ω = τIp − θ[G −
diag(G1p)] where G is a binary symmetric sparse matrix

whose induced graph is a
√
p × √

p 2D lattice. In this

simulation model, the strength of the edges increases with θ
and the proportion of 1’s in the simulated outcomes decreases

as τ increases. The existing literature of Ising model estimation

(e.g., [6]) predominantly focuses on the cases where the two

classes of the outcomes are balanced (roughly 50% of 0 and

1, respectively). This is equivalent to τ = 0 in our simulation

setup, and we also include more realistic settings where the

data is imbalanced.

In our simulations, we fixed n = 1000, p = 64, and the√
p×√

p lattice as the induced graph. We remark that there are

p(p−1)/2 = 2016 node pairs in the graph. Hence the number

of parameters is actually greater than the sample size n. There

are 112 true edges in the graph, roughly 5.6% of all node pairs.

We consider all nine combinations of θ ∈ {0.25, 0.5, 1} and

τ ∈ {0, 0.025, 0.05}, and repeated each setting for N = 40
times.

We first investigate how the accuracy (the proportion of true

edges among the selected) of PRAIME-RF change with the

proportion of node pairs selected (Figure 1). Since only 5.6%
of the node pairs are true edges in this graph, the accuracy

of the top candidates is a more relevant measure of ranking

performance than measures of the whole ranking list such as

area under ROC. We find that the top candidates selected by

PRAIME-RF are very accurate, and selecting the top 5.6%
leads to almost perfect graph selection in many settings. While

EPL does not provide a ranking of all edges directly, its

regularization trace does output a sequence of graphs with

increasing density as a discrete approximate ranking. We

plot the accuracy of these graphs as curve in these figures,

and found that it does not perform as well as PRAIME-RF,

since the curve accuracy of EPL is always lower than the

corresponding one for PRAIME-RF.

Neighborhood selection methods cannot return exact or

approximate ranking of graphs, as p regularization paths

are involved, and their optimal penalty parameters may be

different. Instead, neighborhood selection methods typically

only output one single graph. For each simulation setting, and

each γ = 0, 0.5, 1 in NS-BIC(γ), we also plotted a marker

in Figure 1 representing its average proportion of node pairs

selected (X axis value) and the average accuracy (Y axis value)

of its output graphs across simulation replicates. We first find

that NS-BIC(γ) tends to select graphs much sparser than the

true graphs. Even for the same proportion of edges selected,

the accuracy of NS-BIC(γ) are lower than PRAIME-RF in

the most of the cases, except when its selected graph is almost

empty (e.g., when θ = 0.25). In contrast, PRAIME-RF enables



Fig. 1. Ranking accuracy in simulations. The titles of the panels are the values of the simulation parameters (θ, τ). The X-axis represents the proportion
of node pairs selected (in square-root scale), and the Y-axis represents the accuracy, i.e., the proportion of true edges in the selected node pairs. We present
the mean accuracy curve for PRAIME-RF and EPL methods. The vertical lines represent the sparsity level of the true graph (5.6% of node pairs are true
edges). The markers in each panel show the average proportion of selected edges and the average accuracy for NS-BIC(γ), a neighborhood selection method
[6]. The markers triangle, diamond and circle represent the performance of BIC with the parameter γ = 0, 0.5, 1 respectively. The star markers represent
the the average proportion of selected edges and the average accuracy for EPL with optimal λ selected by cross-validation. The position of the markers are
determined by the mean accuracy (y-axis) and the proportion of detected edges (x-axis).

the flexibility of selecting sparse graphs with high accuracy

based on user-provided thresholds in all cases.

We also compared the computational costs of these methods

(Table I), and find that NS-BIC is the fastest, but it does not

compensate the loss in accuracy as shown in Figure 1. In the

remaining two methods, PRAIME-RF is faster than EPL.

We further studied the False Discovery Rate (FDR) control

of PRAIME-RF (Table II), and find that the empirical FDR

are reasonably close to the nominal level in the majority of

the case. We remark that the pseudo-likelihood methods and

neighborhood selection methods cannot provide any natural

FDR control at all.

TABLE I
THE MEAN AND STANDARD DEVIATION (IN PARENTHESES) OF

COMPUTATION TIMES (IN SECONDS) ACROSS 40 SIMULATIONS.

(θ, τ) PRAIME-RF NS-BIC(0) NS-BIC(0.5) NS-BIC(1) EPL
(0.25, 0) 46.24(0.23) 0.07(0.01) 0.07 (0.01) 0.07 (0.03) 101.83(7.12)

(0.25, 0.025) 46.36(0.24) 0.06 (0.01) 0.06 (0.01) 0.06 (0.01) 102.43(6.85)
(0.25, 0.05) 46.34(0.25) 0.06 (0.01) 0.06 (0.01) 0.06 (0.01) 101.75(7.12)

(0.5, 0) 46.20(0.25) 0.08 (0.01) 0.08 (0.01) 0.08 (0.01) 101.10(5.12)
(0.5, 0.025) 46.45(0.26) 0.08 (0.01) 0.08 (0.01) 0.08 (0.01) 101.20(4.71)
(0.5, 0.05) 46.18(0.28) 0.08 (0.01) 0.08 (0.01) 0.08 (0.01) 97.55(4.54)

(1,0) 45.62(0.24) 0.14 (0.02) 0.14 (0.02) 0.14 (0.02) 157.25(6.62)
(1, 0.025) 45.54(0.25) 0.12 (0.02) 0.12 (0.02) 0.12 (0.02) 147.62(5.62)
(1, 0.05) 45.82(0.26) 0.10 (0.01) 0.10 (0.01) 0.10 (0.01) 134.94(6.01)

B. Analysis of House Co-sponsorship data
We analyze the US House of Representatives cosponsorship

dataset [23] for the 109th (January 3, 2005 - January 3, 2007)



TABLE II
THE MEAN AND STANDARD DEVIATION (IN PARENTHESES) OF PROPORTION OF CANDIDATE EDGES SELECTED (% EDGES) BY PRAIME-RF AND THE

EMPIRICAL FDR (EFDR) ACROSS 40 SIMULATIONS AT THE NOMINAL FDR LEVEL 0.05, 0.1 AND 0.2.

FDR=0.05 FDR=0.10 FDR=0.20
(θ, τ) % edges EFDR % edges EFDR % edges EFDR

(0.25, 0) 0.0491(0.0038) 0.0651(0.0282) 0.0559(0.0037) 0.1313(0.0396) 0.0697(0.0047) 0.2500(0.0446)
(0.25, 0.025) 0.0484(0.0033) 0.0527(0.0287) 0.0562(0.0037) 0.1224(0.0389) 0.0689(0.0054) 0.2414(0.0526)
(0.25, 0.05) 0.0495(0.0031) 0.0703(0.0250) 0.0578(0.0038) 0.1426(0.0410) 0.0712(0.0054) 0.2647(0.0479)

(0.5, 0) 0.0615(0.0017) 0.1068(0.0253) 0.0662(0.0027) 0.1683(0.0342) 0.0754(0.0054) 0.2676(0.0568)
(0.5, 0.025) 0.0616(0.0022) 0.1056(0.0332) 0.0660(0.0037) 0.1624(0.0511) 0.0746(0.0075) 0.2534(0.0862)
(0.5, 0.05) 0.0611(0.0014) 0.1019(0.0201) 0.0661(0.0022) 0.1645(0.0289) 0.0750(0.0045) 0.2708(0.0491)

(1,0) 0.0451(0.0062) 0.0611(0.0312) 0.0547(0.0060) 0.1244(0.0404) 0.0349(0.0034) 0.2539(0.0559)
(1, 0.025) 0.0369(0.0097) 0.0434(0.0293) 0.0479(0.0097) 0.1102(0.0388) 0.0641(0.0102) 0.2326(0.0627)
(1, 0.05) 0.0164(0.0089) 0.0375(0.0425) 0.0284(0.0099) 0.0605(0.0529) 0.0454(0.0117) 0.1507(0.0755)

Fig. 2. Edge densities within each party and between party, normalized by the
overall density of the corresponding network. The curves are for PRAIME-
RF, and the markers are for the neighborhood selection method NS-BIC(γ).
For each of γ = 0, 0.5, 1, the points for the edge densities within Democrats,
within Republications and between parties are annotated with “DD”, “RR”
and “DR”, respectively.

and 110th (January 3, 2007 - January 3, 2009) Congresses.

For each bill introduced to the house of representatives, there

must be one sponsor congressperson. Then the other members

of the house can express their support to the bill by signing

as cosponsors. A house member may sponsor/cosponsor a

bill due to its ideological appealingness, or his/her social

relationship with the other congresspersons supporting it.

Let p be the number of the members of the house, and

n be the number of bills introduced. We observe y(i) =
(y

(i)
1 , . . . , y

(i)
p )T ∈ {0, 1}p for i = 1, . . . , n where y

(i)
j = 1

if the congressperson j sponsor/cosponsor bill j. We model

y(i) for i = 1, . . . , n as independent samples from an Ising

model. The sparse graph structure induced by the parameter

matrix of this Ising model contains the information on the

interdependence among the members of the house. Each bill

usually only receives cosponsorship from less than 5% of the

congress members, and typically each member of the house

only sponsors or cosponsors no more than 4% of the bills

introduced. So this cosponsorship dataset is very imbalanced

as there are much less 1’s than 0’s in the outcomes.

Since congresspersons in the same party collaborate more

often, they are more likely to cosponsor the same bills.

Previous studies on cosponsorhip network have also confirmed

that the initial two large community detected in this network

are roughly along the party line [24]. In the absence of the

ground truth in real data analysis, we use the party affiliation

as an approximate, i.e., we expect higher edge densities within

each party than that between the two parties in the sparse graph

induced by the estimated Ising model parameter matrix.

For PRAIME-RF, we rank all node pairs by locfdr, and

investigated how the within party and between party edge den-

sities change as the threshold change (Figure 2). As expected,

we find that the edge densities within each party are always

higher than that between the two parties. But this difference

starts vanishing as higher proportions of edges are introduced

in the network, suggesting that the network may become less

informative if the threshold is too loose. We also find that the

density within Democrats is higher than that within Republi-

cans, especially that the strongest edges are mostly between

Democrats. This is consistent with the findings in the literature

of political science that liberals may have more intensive

cosponsorship activities as they believe the government should

take more extensive responsibilities [25]. We also analyze the

cosponsorship data using the neighborhood selection method

NS-BIC(γ). For each of γ = 0, 0.5, 1, we calculate and plot

their edge intensities in Figure 2. Surprisingly, we find in these

graphs that the edges are denser among the congresspersons

in different parties, contradicting to the conventional wisdom.

Fig. 3. PRAIME-RF output networks using 1−locfdr as the edge weights.
Democrats are plotted as blue circles, and Republicans red triangles.

We used 1−locfdr as the edge weights of the congress

member networks (Figure 3). The large scale community



TABLE III
COMMUNITY DETECTION ERROR RATES USING PARTY AFFILIATION AS

THE TRUE LABELS.

Graph House 110 House 109
PRAIME-RF 0.080 0.097

NS-BIC(0) 0.235 0.200
NS-BIC(0.5) 0.228 0.180
NS-BIC(1) 0.210 0.160

structure appears to be along the party line. To further quan-

titatively validate this, we apply spectral clustering based

community detection [27] to these PRAIME-RF output graphs,

and evaluate the cluster assignments using the party affiliation

as the true labels. We find that PRAIME-RF output networks

lead to much lower mis-classification rates than the results

from the neighborhood selection outputs (Table III).

These conditional independence graphs among congressper-

sons could help political scientists to gain insights in various

aspects of congressional politics. We present one such example

to illustrate the interpretability of PRAIME-RF outputs. In the

literature of network analysis, it is commonly believed that

the “hubs”, i.e., highly connected nodes, within a community

is more likely to be influential or scientifically interesting

than the hubs of the whole network (e.g., [28]). Intuitively, a

congressperson with no direct association with the members in

the opposite party has higher chance to be ideological extreme.

Combining the above two thoughts, we examine the political

positions of the congress members who have high within-party

degree (above 80% quantile of the party) and low across-party

degree (no more than 0.2) in both of the 109th and 110th

congresses (Table IV). We find that all Democrats satisfy-

ing these criteria are among the most prominent progressive

figures in the house, and their Republican counterparts are

regarded as the most conservative members or the leaders in

the conservative wing, including the then-Congressman and

today’s Vice President, Mike Pence.

V. DISCUSSION AND CONCLUSION

The literature has predominantly treated the sparse graph

estimation for Ising models as a sparse variable selection prob-

lem. The existing popular methods for Ising model estimation

are largely based on penalized regression with un-intuitive

tuning parameters, and return one single graph with no full

ranking of all edges or guarantees of the desired sparsity level.

We propose a PRediction Approach for Ising Model

Estimation (PRAIME). PRAIME is based on the pairwise

complete decouping of the Ising model parameters. It estimates

the individual parameters for each potential edge using the

probabilistic predictions of the observed data from an arbitrary

probabilistic predictive model, provides the ranking of all node

pairs by statistical significance, and enables flexible selection

of the sparse graph by thresholding with the threshold chosen

by the analysts. We implemented PRAIME using random

forest, and illustrated its advantage in accuracy and flexibility

over the neighborhood selection method using synthetic and

real data.
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